# ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА № 376 МОСКОВСКОГО РАЙОНА САНКТ-ПЕТЕРБУРГА

(ГБОУ средняя школа № 376 Московского района Санкт-Петербурга)



Индивидуальный образовательный проект

Очистка и дезинфекция воздуха

Выполнил: обучающийся 11 «Б» класса Харланов Александр Сергеевич

Руководитель: учитель физики Барсуков Олег Анатольевич

# Проблема

РАСПРОСТРАНЕНИЕ ВИРУСОВ И УСУГУБЛЕНИЕ ЭПИДЕМИОЛОГИЧЕСКОЙ ОБСТАНОВКИ С ПОЯВЛЕНИЕМ НОВОЙ КОРОНАВИРУСНОЙ ИНФЕКЦИИ





часть 1

Изучение вопроса и выбор способа очистки воздуха

Проведение эксперимента: размещение аппарата в классе

# ЭТАПЫ-РАБОТЫ

ДЕЗИНФЕКЦИЯ КАК ТЕХНОЛОГИЯ

часть 1

Изучение вопроса и выбор способа очистки воздуха

Проведение эксперимента: размещение аппарата в классе

часть 2

Изучение принципа работы и расчет характеристик

Проектирование и создание рециркулятора

# ЭТАПЫ-РАБОТЫ

ДЕЗИНФЕКЦИЯ КАК ТЕХНОЛОГИЯ

часть 1

Изучение вопроса и выбор способа очистки воздуха

Проведение эксперимента: размещение аппарата в классе

часть 2

Изучение принципа работы и расчет характеристик

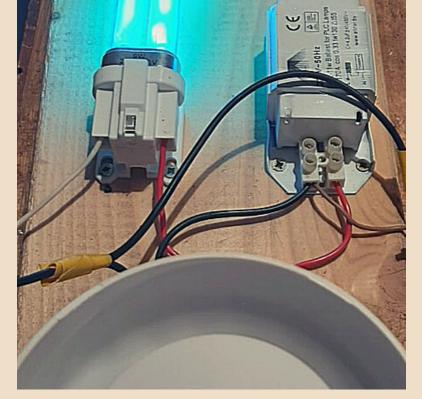
Проектирование и создание рециркулятора

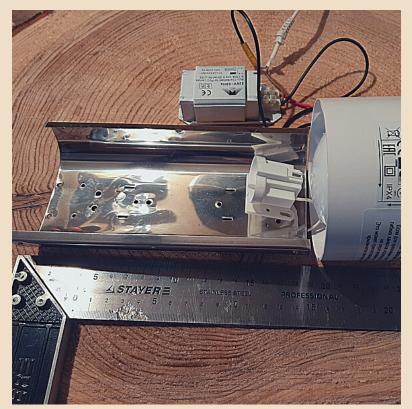
Аналитика существенных часть 3 характеристик устройств и помещения

Выведение формулы и расчет эффективности установленной системы

# PABOTB

ДЕЗИНФЕКЦИЯ КАК ТЕХНОЛОГИЯ


#### ЧАСТЬ 1


Способ очистки и подтверждение его эффективности

ЭКСПЕРИМЕНТ 🛫









Сборка цепи

Изготовление корпуса





**ЧАСТЬ 2** 

Создание рециркулятора

МОДЕЛЬ

## Подготовка составляющих

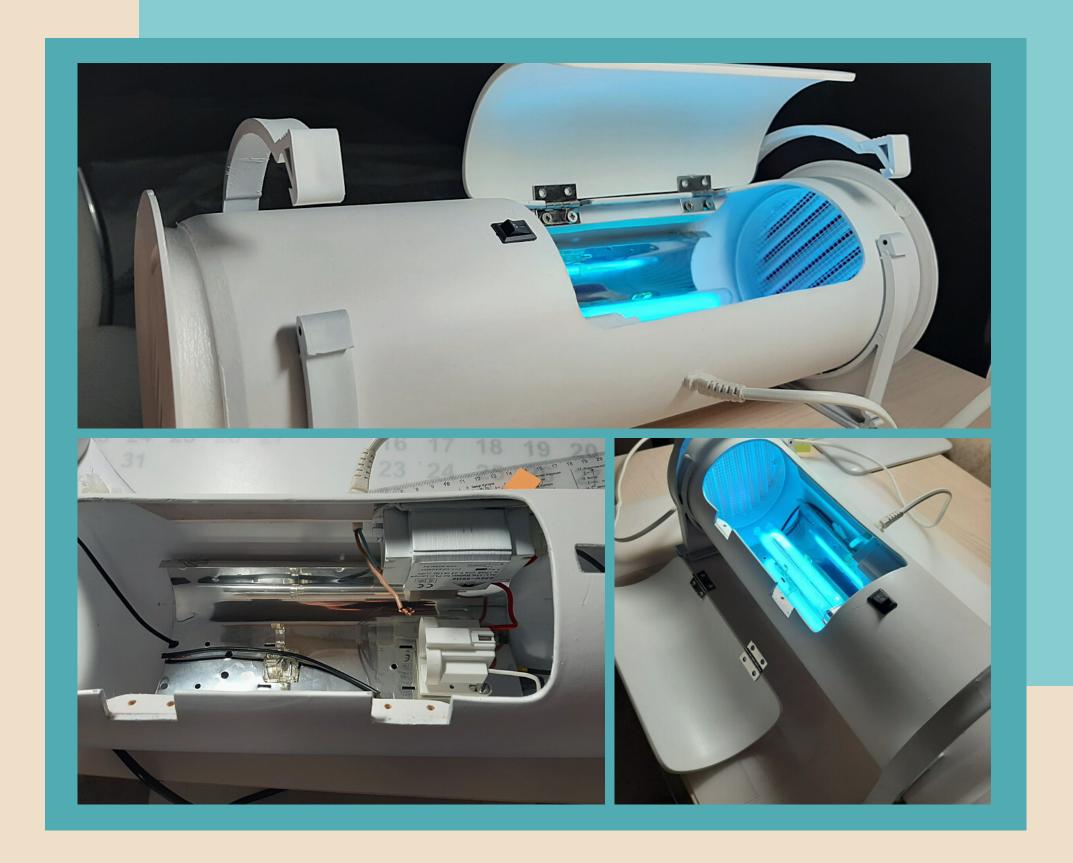
ДЕТАЛИ 🌣





Изготовление крышки

#### Опора крепления крышки






# Завершающий этап

сборка 6





ЧАСТЬ 3

# Вычисление эффективности

РАССЧЕТ



$$t = \frac{V}{Q} * (\frac{IN4 - IN3}{N_3 * (1 - J_{6\kappa'})} + 2) = \frac{V}{Q} * (\frac{IN4}{(1 - J_{6\kappa'})} + 2)$$

$$t = \frac{V}{Q} * \left( \frac{N_3 * (1 - J_{6\kappa'})}{(1 - J_{6\kappa'})} + 2 \right) = \frac{V}{Q} * \left( \frac{N2 * (1 - J_{6\kappa'})^2}{(1 - J_{6\kappa'})} + 2 \right)$$

$$t = \frac{V}{Q} * \left( \frac{N_1 * (1 - J_{6\kappa'})^3}{(1 - J_{6\kappa'})} + 2 \right) =$$

$$= \frac{V}{Q} * \left( \frac{N_1*(1-((N_1-N_2)/N_1))^3}{(1-J_{6\kappa'})} + 2 \right)$$

$$t = \frac{V}{Q} * \left( \frac{N_1 * (1 - J_{6\kappa'})^3}{(1 - J_{6\kappa'})} + 2 \right)^{*9}$$

$$t = \frac{SL}{Q} * (\frac{N1*(1-J_{6\kappa'})^3}{(1-J_{6\kappa'})} + 2)$$

t= 
$$\frac{75,54*3,91}{100}$$
 \* (  $\frac{1*(1-0,6)^3}{0,1}$  + 2) = 7,79754096 ≈ 7,8 (4

Ответ: 7,8 ч



#### ЭКСПЕРИМЕНТ

Дезинфекция кабинета





РЕЦИРКУЛЯТОР

Модель



$$t = \frac{SL}{Q} * \left( \frac{N_1*(1-((N_1-N_2)/N_1))^3}{(1-J_{6\kappa'})} + 2 \right)$$

$$t = \frac{SL}{Q} * (\frac{(1-J_{6\kappa})^3}{(1-J_{6\kappa'})} + 2)$$

ФОРМУЛА ДЛЯ РАСЧЕТА

Научное пособие



#### ЭФФЕКТИВНОСТЬ РЕЦИРКУЛЯТОРОВ ПОДТВЕРЖДЕНА ЭКСПЕРЕМЕНТАЛЬНО

Выявлено снижение заболеваемости в экспериментальном классе

## Выводы



#### ЭФЕКТИВНОСТЬ РЕЦИРКУЛЯТОРОВ ПОДТВЕРЖДЕНА ЭКСПЕРЕМЕНТАЛЬНО

Выявлено снижение заболеваемости в экспериментальном классе

### ВОЗМОЖНОСТЬ СОБРАТЬ АППАРАТ САМОСТОЯТЕЛЬНО ПОДТВЕРЖДЕНА

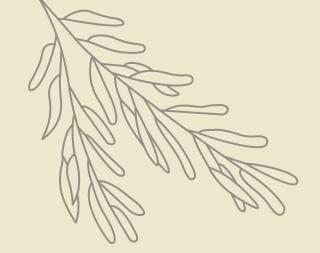
Устройство исправно работает

### Выводы



#### ЭФЕКТИВНОСТЬ РЕЦИРКУЛЯТОРОВ ПОДТВЕРЖДЕНА ЭКСПЕРЕМЕНТАЛЬНО

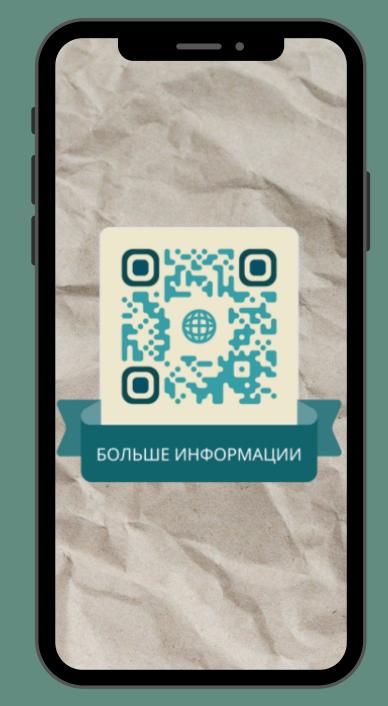
Выявлено снижение заболеваемости в экспериментальном классе


## ВОЗМОЖНОСТЬ СОБРАТЬ АППАРАТ САМОСТОЯТЕЛЬНО ПОДТВЕРЖДЕНА

Устройство исправно работает

# ЭФЕКТИВНОСТЬ УСТАНОВЛЕННОЙ СИСТЕМЫ ДОСТИГНЕТ МАКСИМУМА СПУСТЯ 9 ЧАСОВ РАБОТЫ

Или при увеличечнии количества аппаратов


### Выводы



## Спасибо за внимание

И берегите свое здоровье





Дополнительные этапы проекта

GeirrySuidLog@gmail.com